Security advisory

Critical Credential Reuse Vulnerability in Cisco ISE Cloud Deployments 

Summary 

OEM Cisco 
Severity Critical 
CVSS Score 9.9 
CVEs CVE-2025-20286 
Actively Exploited No 
Exploited in Wild No 
Advisory Version 1.0 

Overview 

Cisco has disclosed a critical vulnerability in Identity Services Engine (ISE) cloud deployments that allows unauthenticated remote attackers to gain administrative access across multiple instances due to improperly generated static credentials.

Tracked as CVE-2025-20286, with a CVSS score of 9.9, this flaw affects ISE deployments on AWS, Microsoft Azure, and Oracle Cloud Infrastructure (OCI). Cisco has released hotfixes and announced permanent fixes for impacted versions. 

Vulnerability Name CVE ID Product Affected Severity 
​Cisco ISE Shared Credential Vulnerability  CVE-2025-20286 Cisco ISE   Critical 

Technical Summary 

The vulnerability stems from improper generation of credentials during the setup of Cisco ISE on cloud platforms. Each deployment of the same ISE version on a given platform (eg – AWS 3.1) shares identical static credentials. This oversight enables an attacker to extract credentials from one deployment and reuse them to access others, if network access is available. 

This issue is only to cloud-hosted Primary Administration nodes. Traditional on-premises deployments or hybrid setups with local admin nodes are not affected. 

CVE ID System Affected  Vulnerability Details Impact 
  CVE-2025-20286  Cisco ISE 3.1 – 3.4 Static credentials reused across same-version cloud deployments. Credentials can be extracted from one instance and reused across others on the same cloud platform   Access sensitive data 

Remediation

Apply Hotfix Immediately: Install the universal hotfix ise-apply-CSCwn63400_3.1.x_patchall-SPA.tar.gz on ISE versions 3.1 to 3.4. 

Cisco ISE Release Hot Fix First Fixed Release 
3.0 and earlier Not applicable. Not affected. 
3.1 ise-apply-CSCwn63400_3.1.x_patchall-SPA.tar.gz Migrate to a fixed release. 
This hot fix applies to Releases 3.1 through 3.4. 
3.2 ise-apply-CSCwn63400_3.1.x_patchall-SPA.tar.gz Migrate to a fixed release. 
This hot fix applies to Releases 3.1 through 3.4. 
3.3 ise-apply-CSCwn63400_3.1.x_patchall-SPA.tar.gz 3.3P8 (November 2025) 
This hot fix applies to Releases 3.1 through 3.4. 
3.4 ise-apply-CSCwn63400_3.1.x_patchall-SPA.tar.gz 3.4P3 (October 2025) 
This hot fix applies to Releases 3.1 through 3.4. 
3.5 Not applicable. Planned release (Aug 2025) 

Conclusion: 
CVE-2025-20286 presents a severe security risk to organizations using Cisco ISE on public cloud platforms. By exploiting shared static credentials, attackers can potentially move laterally between cloud deployments.

Although no active exploitation has been reported, a proof-of-concept (PoC) exploit is available, heightening the urgency for remediation. 

Organizations should apply hotfixes immediately, upgrade to secured versions, and tighten cloud network access policies to mitigate the risk. On-premises and hybrid deployments remain unaffected, offering a safer architectural alternative. 

References

Reflected XSS Vulnerability in Splunk Enterprise & Cloud Platform 

Summary 

Splunk has disclosed a medium-severity cross-site scripting (XSS) vulnerability affecting multiple versions of its Enterprise and Cloud Platform products that could allow low-privileged attackers to execute malicious JavaScript code in users’ browsers.

OEM Cisco 
Severity MEDIUM 
CVSS Score 4.3 
CVEs CVE-2025-20297 
CWEs CWE-79 
Exploited in Wild No 
Advisory Version 1.0 

Overview 

A security vulnerability identified as CVE-2025-20297 has been found in older versions of Splunk Enterprise and Splunk Cloud Platform.

This issue allows low privileged users to execute unauthorized JavaScript code in a victim’s browser using a specific Splunk feature that generates Pdf from dashboards.

Although the vulnerability is rated as Medium (CVSS 4.3) but it could be a significant risk in environments where Splunk Web is widely accessed by users. 

The vulnerability specifically targets instances with Splunk Web enabled, which represents the majority of production deployments given the component’s central role in dashboard management and user interface functionality.

Vulnerability Name CVE ID Product Affected Severity Fixed Version 
​Reflected Cross Site Scripting  CVE-2025-20297 Splunk Enterprise & Cloud  Medium  Check the remediation section. 

Technical Summary 

The vulnerability lies in the pdfgen/render REST endpoint used to create dashboard PDFs. In vulnerable versions, a low \privileged user (not an admin or power user) can inject a malicious script via this endpoint.

If a legitimate user interacts with the resulting PDF or link, their browser may execute the injected script without their consent, this is working as reflected XSS. 

CVE ID System Affected Vulnerability Details Impact 
CVE-2025-20297  Splunk Enterprise & Cloud multiple versions Low-privileged users can exploit the pdfgen/render endpoint to inject unauthorized JavaScript code into a victim’s browser. Code Execution/Reflected xss. 

Remediation

Splunk has released updates, that addressed the vulnerability:  

  • Splunk Enterprise: Upgrade to version 9.4.2, 9.3.4, 9.2.6, 9.1.9 or latest. 
  • Splunk Cloud Platform: Upgrade to version 9.3.2411.102, 9.3.2408.111, 9.2.2406.118 or latest. 

If you cannot upgrade immediately, you can disable Splunk Web to prevent exploitation. For this you can review the web.conf configuration file and follow the Splunk guidance on disabling unnecessary components. 

Disabling Splunk Web may impact users who rely on the web interface so consider access controls or network-based restrictions as temporary mitigations. 

Conclusion: 
While CVE-2025-20297 is rated as a medium severity vulnerability, it should not be ignored in the environments where many users interact with Splunk dashboards. Attackers with limited permissions could potentially target higher privileged users by modifying malicious links or payloads. 

Organizations should prioritize upgrading Splunk to the fixed versions or implementing the workarounds immediately.

Even though this vulnerability requires some user interaction, the risks include unauthorized access to sensitive data through potential session hijacking. 

While Splunk has not provided specific detection methods for this vulnerability, organizations should monitor access patterns to the pdfgen/render endpoint and review user privilege assignments to minimize potential exposure

This vulnerability poses a significant risk to organizations relying on Splunk’s data analytics platform for security monitoring and business intelligence operations.

References

High Risk DoS Vulnerability in ModSecurity WAF 

Summary 

ModSecurity is an open source, cross platform web application firewall (WAF) engine for Apache, IIS and Nginx.

OEM ModSecurity 
Severity HIGH 
CVSS Score 7.5 
CVEs CVE-2025-48866 
CWEs CWE-1050 
Exploited in Wild No 
Advisory Version 1.0 

Overview 

A Denial of Service (DoS) vulnerability has been identified in ModSecurity, an open-source web application firewall (WAF) used with Apache, Nginx and IIS.

The issue affects versions prior to 2.9.10 and related to the “sanitiseArg” action, which can be exploited by adding an excessive number of arguments, ultimately causing the system to fail or crash. The vulnerability has been fixed in version 2.9.10. 

There is no user interaction required to trigger, exploiting it can lead to significant resource consumption, resulting in service disruption. 

Vulnerability Name CVE ID Product Affected Severity Fixed Version 
​Denial of Service (DoS) vulnerability  CVE-2025-48866 Modsecurity WAF  High  v2.9.10 

Technical Summary 

The vulnerability arises from the behavior of the “sanitiseArg” (also referred to as “sanitizeArg”) action in ModSecurity. This action sanitizes a specific argument passed to a rule (e.g.- password), masking it in the logs by replacing its value with asterisks (*). 

CVE ID System Affected Vulnerability Details Impact 
  CVE-2025-48866  ModSecurity (mod_security2.x) prior to v2.9.10 When a rule uses the sanitiseArg action, it processes each argument that matches the specified name (e.g – password).  If a large number of matching arguments (e.g.- 500 or more) are passed, ModSecurity repeatedly adds them to memory, which can lead to excessive memory consumption and potentially crash the system. System crashes due to resource exhaustion (DoS)   

Remediation

Apply Patches Promptly: Upgrade to ModSecurity version 2.9.10 or the latest one. 

Avoid using the “sanitizeArg” or “sanitizeArg” actions in your rules. If these actions are not used, the engine will not be affected by the vulnerability.  

Conclusion: 
This vulnerability is similar to this CVE-2025-47947 issue, presents a significant risk, especially for organizations relying on ModSecurity 2.x versions for web application protection. 

Although the vulnerability is rated as high, it requires a specific set of conditions to be exploited. But to ensure the continued stability and security of web applications, the fix needs to be applied as soon as possible. 

References

Critical Vulnerabilities Patched in IBM QRadar Suite & Cloud Pak for Security 

Summary : Security Advisory

Multiple vulnerabilities have been discovered in IBM QRadar Suite Software and Cloud Pak, affecting versions 1.10.0.0 through 1.11.2.0.

The company released patches on June 3, 2025, addressing five distinct Common Vulnerabilities and Exposures (CVEs) that affect enterprise security infrastructure used by organizations worldwide.

OEM IBM 
Severity Critical 
CVSS Score 9.6 
CVEs CVE-2025-25022, CVE-2025-2502, CVE-2025-25020, CVE-2025-25019, CVE-2025-1334 
Actively Exploited No 
Exploited in Wild No 
Advisory Version 1.0 

Overview 

These include risks such as remote code execution, information disclosure, session hijacking, and denial of service. The most critical vulnerability (CVE-2025-25022) allows unauthenticated access to sensitive configuration files. IBM has released version 1.11.3.0 to address these issues. 

Vulnerability Name CVE ID Product Affected CVSS Score Severity 
​Information Disclosure Vulnerability  CVE-2025-25022 IBM Cloud Pak, QRadar Suite  9.6  Critical 
Code Execution Vulnerability  CVE-2025-25021 IBM QRadar SIEM  7.2  High 
Denial of Service Vulnerability  CVE-2025-25020 IBM QRadar SIEM  6.5  Medium 
Session Hijacking Vulnerability  CVE-2025-25019 IBM QRadar SIEM  4.8  Medium 
Web Cache Disclosure Vulnerability  CVE-2025-1334 IBM QRadar Suite  4.0  Medium 

Technical Summary 

The identified vulnerabilities affect both the IBM QRadar Suite and Cloud Pak, exposing them to a variety of threats such as unauthorized access, arbitrary code execution, and denial of service.

These flaws arise from weaknesses in session handling, code generation, API validation, and file configuration security. 

CVE ID System Affected Vulnerability Details Impact 
  CVE-2025-25022   QRadar SIEM Unauthenticated access to sensitive config files due to poor protections.   Information disclosure, RCE 
   CVE-2025-25021    QRadar SIEM Privileged code execution due to improper script code generation in case management.   Remote Code Execution 
  CVE-2025-25020   QRadar SIEM API input validation flaw allowing service crash via malformed data   Denial of Service 
   CVE-2025-25019    QRadar SIEM Sessions not invalidated upon logout, enabling impersonation by attackers. Session Hijacking 
  CVE-2025-1334   QRadar Suite Cached web content readable by other users, compromising multi-user data confidentiality. Local Info Disclosure 

Remediation

  • Apply Latest Fix: Upgrade to IBM QRadar Suite Software and Cloud Pak version 1.11.3.0 or later. 

Refer to IBM’s official installation and upgrade documentation for detailed steps.  

Conclusion: 
These vulnerabilities pose significant security risks, especially CVE-2025-25022 with a critical severity score of 9.6. Organizations using the affected IBM QRadar and Cloud Pak versions should prioritize upgrading to latest version to mitigate exposure.

IBM has acknowledged these issues and released patches to address all five vulnerabilities. 

Notably, IBM has identified no effective workarounds or mitigations for these vulnerabilities, making patching the only viable protection strategy.

References

Critical 0-Day Vulnerabilities in Qualcomm Adreno GPU Drivers Actively Exploited  

Summary 

OEM Qualcomm 
Severity HIGH 
CVSS Score 8.6 
CVEs CVE-2025-21479, CVE-2025-21480, CVE-2025-27038 
Actively Exploited Yes 
Exploited in Wild Yes 
Advisory Version 1.0 

Overview 

Three actively exploited zero-day vulnerabilities in Qualcomm’s Adreno GPU drivers (CVE-2025-21479, CVE-2025-21480, CVE-2025-27038) have been disclosed and patched.

These flaws impact billions of Android devices across vendors such as Samsung, Google, Xiaomi, and OnePlus. Qualcomm released patches to OEMs in May 2025, urging immediate integration to mitigate severe memory corruption and code execution threats. 

Vulnerability Name CVE ID Product Affected CVSS Score Severity 
​Incorrect Authorization Vulnerability  CVE-2025-21479 Qualcomm Adreno GPU Driver  8.6  High 
Incorrect Authorization Vulnerability  CVE-2025-21480 Qualcomm Adreno GPU Driver  8.6  High 
Use-After-Free Vulnerability  CVE-2025-27038 Qualcomm Adreno GPU Driver  7.5  High 

Technical Summary 

These vulnerabilities reside within Qualcomm’s Adreno GPU driver, specifically in the Graphics component. The flaws allow attackers to corrupt memory, escalate privileges or execute arbitrary code. Two issues (CVE-2025-21479, CVE-2025-21480) result from incorrect authorization mechanisms in GPU microcode and the third (CVE-2025-27038) is a use-after-free flaw that can be exploited via malicious content rendered through Chrome. 

CVE ID System Affected Vulnerability Details Impact 
  CVE-2025-21479   Android (Adreno GPU) Unauthorized command execution during specific GPU microcode sequences causes memory corruption.   Privilege escalation, system compromise. 
   CVE-2025-21480    Android (Adreno GPU) Similar unauthorized GPU command flaw allowing memory corruption via improper authorization checks.   Memory corruption, remote code execution. 
  CVE-2025-27038   Android (Chrome/Adreno) Use-after-free condition in graphics rendering pipeline (via Chrome) allows attacker control over freed memory space.   Arbitrary code execution. 

Recommendations

  • Apply OEM Patches Immediately: Qualcomm released fixes in May 2025 to all OEMs; users should install the latest firmware updates from their device manufacturers. 
  • Check for Updates: Go to Settings → System → Software Update and apply the latest security patches as soon as available. 
  • Apply Security Updates: Users should ensure their Android devices receive the latest security updates. 
  • Monitor Manufacturer Communications: Stay informed about patch availability specific to your device model via official OEM channels. 

Conclusion: 
These zero-day vulnerabilities in Qualcomm’s Adreno GPU drivers highlight ongoing security risks in mobile hardware components.

Exploited in limited, targeted attacks potentially by spyware vendors or state-sponsored actors these flaws pose significant threats to Android devices worldwide. 

In response to confirmed exploitation, CISA has added all three CVEs (CVE-2025-21479, CVE-2025-21480, CVE-2025-27038) to its Known Exploited Vulnerabilities (KEV) catalog, mandating swift action for federal systems.

Timely patching by OEMs and proactive updates by users are critical to mitigating these risks and preventing further exploitation. 

References

 

NIST & CISA Proposed Metric for Vulnerability Exploitation Probability

The National Institute of Standards and Technology (NIST) is proposing a new metric to determine the likelihood of any software or hardware vulnerability being exploited.

The new metric is “Likely Exploited Vulnerabilities” (LEV), that aims to close a key gap in vulnerability management.

This new data point can benefit the SecOps teams who are working to release an effective patch management strategy and address the development flaws.

NIST now wants members of cyber security community to come forward and validate the method as predicting which ones is important for the efficiency and cost effectiveness of enterprise vulnerability remediation.

However NIST proposed that predicting ones which is important for the efficiency and cost effectiveness of enterprise vulnerability remediation efforts is important.

Currently, such remediation efforts rely on the Exploit Prediction Scoring System (EPSS), which has known inaccurate values, and Known Exploited Vulnerability (KEV) lists, which may not be comprehensive.

The proposed likelihood metric may augment EPSS remediation (correcting some inaccuracies) and KEV lists (enabling measurements of comprehensiveness). However, collaboration with industry is necessary to provide necessary performance measurements.

Importance of Metric for Vulnerability Exploitation Probability

Remediating vulnerabilities is time-consuming and costly. According to the paper, most companies only manage to patch about 16% of the vulnerabilities affecting their systems each month.

Meanwhile, research shows that only about 5% of vulnerabilities are exploited in the wild.

It is found organizations would spend their limited resources patching that small but dangerous subset, but identifying them has proven difficult.

That’s where LEV comes in to assist organizations prioritize vulnerabilities that are likely to have already been used in attacks, the metric could make patching efforts more targeted and effective.

In a recently published paper, Peter Mell (formerly of NIST) and Jonathan Spring of CISA presented a vulnerability exploitation metric that builds upon the existing Exploit Prediction Scoring System (EPSS) and CISA’s Known Exploited Vulnerabilities (KEV) catalog.

The researchers noted that studies show only about 5% of known vulnerabilities are exploited in the wild, while organizations typically remediate only 16% of vulnerabilities each month.

The researchers outline four key ways LEV could be used:

1. Estimate how many vulnerabilities have been exploited.
2. Check how complete KEV lists are.
3. Identify high-risk vulnerabilities missing from those lists.
4. Fix blind spots in EPSS, which sometimes underestimates risk for already-exploited bugs.

Introducing the LEV Metric

Mell and Spring’s new metric—called Likely Exploited Vulnerabilities (LEV) probabilities—aims to address the limitations of both EPSS and the KEV catalog. While EPSS provides 30-day exploitation probabilities, it has known inaccuracies, particularly underestimating risk for already-exploited vulnerabilities. KEV, on the other hand, is limited by its reliance on known exploit data and may not be comprehensive.

LEV probabilities are designed to:

  • Estimate how many and which vulnerabilities are likely to have been exploited
  • Assess the completeness of the KEV catalog
  • Enhance KEV-based prioritization by identifying likely-exploited vulnerabilities not yet listed
  • Improve EPSS-based prioritization by correcting underestimations

Key Findings

The researchers compared LEV and EPSS scores for specific vulnerabilities, showing significant differences.

For example:

  • CVE-2023-1730 (SupportCandy WordPress plugin SQL injection): before 3.1.5, the LEV probability was 0.70, while the peak EPSS score was 0.16.
  • CVE-2023-29373 (Microsoft ODBC Driver RCE – Remote Code Execution vulnerability): the LEV probability was 0.54350, while the peak EPSS probability was 0.08.

The LEV analysis identified hundreds of vulnerabilities with probabilities near 1.0. However, many of these are not listed in current KEV catalogs. NIST is actively seeking collaboration with partners as real-world validation is must for LEV to be a promising idea rather than a trusted tool.

NIST is currently seeking industry partners with relevant datasets to empirically evaluate the effectiveness of LEV probabilities through real-world performance measurements.

Sources: https://www.helpnetsecurity.com/2025/05/26/nist-likely-exploited-vulnerabilities/#:~:text=LEV%20aims%20to%20bridge%20that,%2C%20not%20replace%2C%20existing%20methods.

Linux Kernel Exploitation in ksmbd (CVE-2025-37899) Discovered with AI Assistance

Summary: A high-severity use-after-free vulnerability (CVE-2025-37899) has been discovered in the ksmbd component of the Linux kernel, which implements the SMB3 protocol for file sharing.

OEMLinux
SeverityHigh
CVSS ScoreN/A
CVEsCVE-2025-37899
Actively ExploitedNo
Exploited in WildNo
Advisory Version1.0

Overview

The vulnerability, confirmed on May 20, 2025 which was uncovered through AI-assisted code analysis using OpenAI’s o3 model. It affects multiple versions of the Linux kernel and may lead to arbitrary code execution with kernel privileges. As of now, no official fix is available, but Linux distributions including SUSE team are actively working on patches.

Vulnerability NameCVE IDProduct AffectedSeverity
​ksmbd use-after-free vulnerability  CVE-2025-37899Linux kernel  High

Technical Summary

The vulnerability lies in the ksmbd kernel server component responsible for SMB3 protocol handling.

A use-after-free bug occurs when one thread processes a logoff command and frees the sess->user object, while another thread bound to the same session attempts to access the same object simultaneously. This results in a race condition that can lead to memory corruption and potentially enable attackers to execute arbitrary code with kernel privileges.

CVE IDSystem AffectedVulnerability DetailsImpact
    CVE-2025-37899  Linux kernel (ksmbd)A race condition during handling of SMB2 LOGOFF commands. sess->user is freed in one thread while still being accessed in another, leading to a classic use-after-free vulnerability. The absence of synchronization around sess->user allows attackers to exploit the freed memory during concurrent SMB operations.  Kernel memory corruption, privilege escalation, remote code execution

Remediation:

  • Fix status: As of now, an official fix has not been released. Linux distributions, including SUSE, are actively developing and testing patches.

General Recommendations

  • Monitor your distribution’s security advisories and apply patches as soon as they are available.
  • Consider disabling or restricting ksmbd (in-kernel SMB3 server) if not explicitly required.
  • Use firewall rules to restrict access to SMB services to trusted networks.
  • Employ kernel hardening options (e.g. memory protections, SELinux/AppArmor policies).
  • Audit SMB traffic for signs of abnormal session setup and teardown behavior.

Conclusion:
CVE-2025-37899 highlights the increasing role of AI in modern vulnerability discovery and the complex nature of concurrency bugs in kernel components. While no fix is yet available, administrators should apply defense-in-depth strategies and watch for updates from their Linux vendors.

The discovery underscores the importance of rigorous code audits, especially in components exposed to network traffic and multithreaded processing.

References:

CISCO ISE & UIC Security Flaws Allow DoS, Privilege Escalation

Summary: Cisco has disclosed multiple vulnerabilities affecting its Identity Services Engine (ISE) and Unified Intelligence Center (UIC).

The ISE bug, tracked as CVE-2025-20152, impacts the RADIUS message processing feature and could be exploited remotely, without authentication, to cause ISE to reload, leading to a denial of service (DoS) condition.

OEMCISCO
SeverityHIGH
CVSS Score8.6
CVEsCVE-2025-20152, CVE-2025-20113, CVE-2025-20114
Actively ExploitedNo
Exploited in WildNo
Advisory Version1.0

Overview

This include a critical denial-of-service (DoS) vulnerability in the RADIUS protocol processing (CVE-2025-20152) and two privilege escalation flaws (CVE-2025-20113, CVE-2025-20114).

These unpatched issues, could result in network disruption and unauthorized access to sensitive data.

Vulnerability NameCVE IDProduct AffectedSeverityFixed Version
​RADIUS DoS Vulnerability  CVE-2025-20152Cisco Identity Services Engine  High  ISE 3.4 Patch 1 (3.4P1)
Privilege Escalation Vulnerability  CVE-2025-20113Unified Intelligence Center  High  UIC 12.5(1)SU ES04, 12.6(2)ES04
Privilege Escalation Vulnerability  CVE-2025-20114Unified Intelligence Center  High  UIC 12.5(1)SU ES04, 12.6(2)ES04

Technical Summary

The vulnerabilities identified in ISE and UIC products are critical and the allow an authenticated attacker to elevate their privileges to those of an administrator, for a limited set of functions on a vulnerable system by potentially accessing or manipulating unauthorized data.

Medium-severity bugs were also resolved in Webex, Webex Meetings, Secure Network Analytics Manager, Secure Network Analytics Virtual Manager, ISE, Duo, Unified Communications and Contact Center Solutions, and Unified Contact Center Enterprise (CCE).

CVE IDSystem AffectedVulnerability DetailsImpact
    CVE-2025-20152  CISCO ISE 3.4Improper handling of malformed RADIUS authentication requests can cause a system reload.    Denial of Service (DoS), Network Disruption
      CVE-2025-20113 Unified Intelligence Center  12.5, 12.6Insufficient server-side validation in API/HTTP requests may allow an authenticated attacker to escalate privileges to Admin level for certain functions.    Privilege Escalation, Unauthorized Data Access
    CVE-2025-20114Unified Intelligence Center  12.5, 12.6Insufficient input validation in API allows IDOR attacks, enabling attackers to access data of other users.    Horizontal Privilege Escalation, Data Exposure

Remediation:

Cisco has released security updates to address these vulnerabilities:

  • For CVE-2025-20152 (Cisco ISE):

Upgrade to ISE 3.4P1 or later. No workarounds exist; RADIUS services are enabled by default, making immediate patching critical.

  • For CVE-2025-20113 and CVE-2025-20114 (UIC):

Upgrade to:

  • UIC 12.5(1)SU ES04 or later.
    • UIC 12.6(2)ES04 or later.
    • Unified CCX users should migrate to a fixed release if using affected versions.

Administrators are advised to verify product versions and apply patches through official Cisco channels.

Conclusion:
These vulnerabilities pose significant security risks especially CVE-2025-20152, which affects the core authentication protocol in many Cisco ISE deployments.

Organizations should prioritize updates to mitigate risks of denial-of-service attacks and unauthorized data access. No exploitation in the wild has been observed so far, but given the critical nature, immediate action is strongly recommended.

References:

Critical Privilege Escalation Vulnerability in Motors WordPress Theme

Summary: A critical privilege escalation vulnerability (CVE-2025-4322) has been identified in the Motors WordPress theme, a widely used premium theme tailored for car dealerships, rentals, and vehicle listings.

OEMWordPress
SeverityCritical
CVSS Score9.8
CVEsCVE-2025-4322
Actively ExploitedNo
Exploited in WildNo
Advisory Version1.0

Overview This vulnerability affects versions up to 5.6.67 and could allow unauthenticated attackers to reset passwords for any user, including administrators, leading to complete site compromise. The issue has been addressed in version 5.6.68, and immediate patching is strongly recommended.

Vulnerability NameCVE IDProduct AffectedSeverityFixed Version
​Privilege Escalation via Password Reset Bypass  CVE-2025-4322Motors WordPress Theme  Critical  5.6.68

Technical Summary

The vulnerability arises from insufficient input validation in the Login Register widget of the Motors theme, specifically within the password-recovery.php template. An attacker can manipulate the hash_check parameter using an invalid UTF-8 character, which is improperly sanitized by the esc_attr() function. This allows the attacker to bypass password reset validations and change passwords without authorization, even for administrator accounts.

CVE IDSystem AffectedVulnerability DetailsImpact
    CVE-2025-4322  Motors WordPress Theme (<= 5.6.67)The password-recovery.php file fails to properly validate whether the stm_lost_password_hash exists and is correct. If the hash is empty (e.g. – no reset was requested), an attacker can bypass the check using an invalid UTF-8 character. The esc_attr() sanitization strips the invalid character after validation, resulting in a successful hash match and unauthorized password update.  Complete site compromise.

Remediation:

  • Immediately update: To mitigate the vulnerability, users of the Motors WordPress theme should immediately update to version 5.6.68 or later.

Conclusion:
CVE-2025-4322 is a critical privilege escalation vulnerability affecting over 22,000+ WordPress sites using the Motors theme.

Exploiting this flaw, unauthenticated attackers can reset administrator passwords and gain full control of vulnerable sites. The vulnerability was responsibly disclosed and swiftly addressed by the vendor, with a patched version (5.6.68) released.

Given the ease of exploitation and potential for full site compromise, users are strongly advised to update immediately.

Organizations relying on the Motors theme should also implement multi-layered security practices, such as web application firewalls, routine patching, and access monitoring, to safeguard their digital assets against similar threats in the future.

References:

Scroll to top